Oxidative Addition/Reductive Elimination

OXIDATIVE ADDITION

- Addition of R-X (*e.g.* H_2 , $HSiR_3$, HBR_2 , ArI, HCI) to the metal.
- Metal oxidation state increases by 2 units (e.g. $Ir^{I} \rightarrow Ir^{III}$).
- Various mechanisms possible (concerted, S_N2, Radical x 2, Ionic see later).
- Familiar main group example = Mg + ArBr \rightarrow ArMgBr Grignard.

REDUCTIVE ELIMINATION

Opposite of Oxidative Addition

Oxidative Addition Mechanisms

Concerted Oxidative Addition (of H₂)

Concerted O.A. is typical for non-polar substrates (H₂, H–C, H–Si, H–B)

Concerted Oxidative Addition (C–H bonds)

 C–H bond O.A. could be a very important means to convert abundant, cheap but unreactive hydrocarbons (*e.g.* methane, benzene) into more complex products.

■ Concerted Mechanism →
 retention of configuration

Concerted Oxidative Addition (C-H bonds)

• Intramolecular C–H bond activation \rightarrow abundant

Intermolecular C−H bond activation → rare

Concerted Oxidative Addition (C–H bonds)

- Problem with <u>Intermolecular</u> C–H bond activation: THERMODYNAMICS
 - C–H bond ~95 kcal mol⁻¹, M–H ~60 kcal mol⁻¹, M–C = 30-45 kcal mol⁻¹
 - $\Delta S = negative (L_xM + H-CR_3 \rightarrow L_xMH(CR_3))$
 - ΔG = usually positive
- General Trends for C–H bond O.A.:
 - H–Aryl > H–Alkyl [because M–Aryl is stronger than M–Alkyl (thermodynamic) and perhaps because prior h²-arene coordination is possible (kinetic)]
 - 3rd row > 2nd row > 1st row (because M–C and M–H bond strengths increase down a group and higher oxidation states also become more accessible)
- Intermolecular C–H bond O.A. is also more likely to be favorable when:
 - Metal complex is coordinatively unsaturated
 - Metal complex is sterically uncongested
 - R-groups on the metal are themselves resistant to metallation
 - Metal has a filled orbital capable of interacting with the σ^* -orbital of the C–H bond

Concerted Oxidative Addition (C–C bonds)

- C–C bond O.A. could be a very significant reaction → turn long-chain hydrocarbons into useful molecules (equivalent to the 'cracking' process)
- Unstrained C–C bonds do not react with TM complexes for thermodynamic reasons
- Generally ONLY get C–C bond O.A. in strained molecules

PtCl₂ +
$$\bigwedge$$
 $\stackrel{\text{O.A.}}{\longrightarrow}$ $\left\{ \begin{array}{c} Cl \\ cl \end{array} \right\} \xrightarrow{+2 \text{ Py}} \begin{array}{c} Py \\ Py \\ Cl \end{array} \right\}$
PtCl₂ + \bigwedge $\stackrel{\text{O.A.}}{\longrightarrow}$ $\left\{ \begin{array}{c} cl \\ cl \end{array} \right\} \xrightarrow{+2 \text{ Py}} \begin{array}{c} Py \\ Py \\ Cl \end{array} \right\}$
PtCl₂ + $\begin{array}{c} cl \\ cl \end{array}$

Nuclephilic (S_N2) Oxidative Addition

- Always get inversion of configuration at X–CRR'R"
- Typical R groups = Benzyl, Allyl, Acyl, Methyl, Ethyl
- Dependence on leaving group ability: CF₃SO₃ > I > Tosylate ~ Br > Cl
- Rate = k[RX][Complex], $\Delta S^{\ddagger} = -40$ to -50 e.u.
- Rate: PhCH₂Br > PhCHBrMe (i.e. l^o > ll^o)
- Faster in more polar solvents due to polar transition state

Fastest for: more electron rich metals, low oxidation state metals, e⁻-donating ligands [PMe₃ > P(OMe)₃], small ligands on the metal (PMe₃ > P^tBu₃)

Ionic Mechanism of Oxidative Addition

- For HX that are largely ionized In solution (*e.g.* HCl, HBr)
- Either nucleophilic attack of X⁻ on the metal, or electrophilic attack of H⁺ on the metal can occur as the 1st step.

Radical Chain Oxidative Addition

- R-I > R-Br > R-CI
- III° > II° > I° (correlates with the stability of the R• radicals)
- Accelerated by radical initiators (e.g. O₂ or peroxides)
- Retarded by radical inhibitors (*e.g.* duroquinone, galvinoxyl, tri-*tert*-butylphenol)
- RACEMIZATION

Non-chain Radical Oxidative Addition

- R-I > R-Br > R-CI
- III° > II° > I° (correlates with the stability of the R• radicals)
- Unaffected by radical initiators (e.g. O₂ or peroxides)
- Unaffected by radical inhibitors
- Common for Ni⁰, Pd⁰, Pt⁰

Useful Mechanistic Probes for O.A. of R–X

- Diastereomeric R–X \rightarrow can probe the steroeochemistry of the α -carbon by NMR spectroscopy
- R–X Substrates that rearrange rapidly if R• is involved:

^tBuDHC—CHD—I

Oxidative Addition Mechanisms - Overview

OA Mechanism	Type of L _x M	Type of X-Y	Features
Concerted (3-centre addition)	(1) coord. Unsat., (2) sterically uncongested, (3) $3^{rd} > 2^{nd} >> 1^{st}$ row TM, (4) filled orbital capable of interacting with the s* orbital of incoming X-Y \rightarrow Often d ⁸ complexes [<i>e.g.</i> IrCl(CO)(PR ₃) ₂].	Fairly non-polar substrates: H–H, R ₃ C–H, R ₃ Si–H strained R ₃ C-CR ₃ , Ar–X not very common	 (1) <i>cis</i>-addition (2) retention of config. at RR'R"C-Y (3) 2nd order, ΔS[‡] ~ -30 e.u., rate <i>not</i> greatly affected by solvent polarity.
Nucleophilic (S _N 2)	Nucleophilic metals <i>e.g.</i> IrCl(CO)(PR ₃) ₂ , Ni(PR ₃) ₄ , Pd(PR ₃) _n	Polarized substrates: R_3C-X (1° > 2° > 3°) (Mel > Etl > ^{<i>i</i>} Prl), Also Cl_2 , Br_2 , l_2	 (1) <i>cis</i>- or <i>trans</i>-addition (2) inversion of config. at RR'R"C-Y (3) 2nd order, ΔS[‡] ~ -40 to -50 e.u., rate accelerated in polar solvents.
Radical (chain or non-chain mechanisms)	Non-chain = Ni(PPh ₃) ₃ , Pt(PPh ₃) ₃ Chain = IrCl(CO)(PMe ₃) ₂ Binuclear = Mn ₂ (CO) ₅ , Co(CN) ₅ ³⁻	R ₃ C–X, R ₃ Sn–X (3° > 2° > 1°)	 (1) cis- or trans-addition (2) racemization of RR'R"C-Y (3) only the radical chain mechanism is accelerated by radical initiators and retarded by radical inhibitors
lonic (H⁺ or X⁻ attacks first)	(a) 18 e ⁻ Pt(PPh ₃) ₄ + H ⁺ Cl ⁻ (H ⁺ attacks first) (a) 16 e ⁻ Ir(COD)(PR ₃) ₂ ⁺ + H ⁺ Cl ⁻ (Cl ⁻ attacks first)	H–X (largely dissociated in solution)	

Oxidative Addition Mechanisms - Overview

- In general : Non polar substrates (*e.g.* H–H, C–H, Si–H) → Concerted Halogens (Cl₂, Br₂, I₂) → Nucleophilic Alkyl halides → Nucleophilic (S_N2) or Radical Acids (HCl, HBr, HI) → Ionic
- For Alkyl Halides, distinguish a S_N2 or radical mechanism by determining whether 3°, 2° or 1° R–X react faster, whether the reaction leads to racemization or inversion at RR'R"C–X, and whether the reaction is accelerated by radical initiators and retarded by radical inhibitors.
- For a radical mechanism, distinguish between a chain or non-chain process by whether the reaction is affected by radical initiators or inhibitors.
- If it is necessary to distinguish between a concerted or S_N2 mechanism, determine whether X and Y are *cis* or *trans*-disposed in the product, whether the reaction leads to retention or inversion of stereochemistry in RR'R"C–X, and whether the reaction is accelerated in polar solvents.